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Abstract An exact numerical diagondhtioion technique is used to calculate the energy 
eigenstatw of a Landauquantized two-dimensional electron gas under a one-dimensional 
periodic S-modulation. On the basis of these calculations, we develop a self-consistent field 
theory for the absorption coefficient in the mid-infrared frequency regime. An extensive 
investigation is carried out in which we find that the plasmon mode changes from a cyclotron 
mode when the modulation is weak to tunnellingsplit modes for the intermediate modulation 
and finally to edge and ID lattice magnetoplasmon modes when the modulation is strong. Our 
numerical results show that as the magndc field decreases, there exist3 electron funnelling. 
However, for strong magnetic fields, electron tunnelling is suppressed. This suppression of 
electron funnelling is signalled by the crossover of two tunnelling-split mcdes into a cyclotron 
mode at strong magnetic fields. The eigenenergy of Lhe edge mode oscillates with electron 
density, related to soh or hard pmntial walls from the modulation for which the electron stays 
in extended and localized states, respectively. 

1. Introduction 

Recent discoveries such as the integral and fractional quantum Hall effects [l, 21 in the 
two-dimensional (2D) Landau-quantized electron gas (EG), the quenching of the Hall effect 
in 2D antidot arrays [3,4,5], the commensurability oscillations in the longitudinal resistance 
within 2D quantum dot 161 and ID quantum wire [7] arrays, the evolution of magnetoplasmon 
modes in ID antiwire arrays 181, and the optical absorption by quantum wires 191 are 
examples of physical phenomena which have stimulated and led to further interest in 
the study of the optical and transport properties in systems of reduced dimensionality. 
Strong electrostatic periodic modulations and mutual Coulomb scattering have produced 
novel effects in the 2DEG subject to ID [lo] or 2D 1111 potential modulation. The rapid 
advances in submicrometre lithographic technology have led to the introduction of in-plane 
confinement within the ZDEG and the construction of quantum wires with many electrons 
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occupying discrete energy subbands. The existence of a strong spatially modulated potential 
produces dramatic commensurability effects in the electron motion at low temperatures when 
a uniform external magnetic field is applied. In this type of artificial ID potential array, many 
pronounced and inhiguing features were observed in the magnetoresistance. For the weak- 
modulation limit, Gerhardts el ai [12] and Vasilopoulos et al [I31 presented calculations 
for the magnetoresistance of a ID array of quantum wires. Appreciable commensurability 
oscillations were obtained in the longitudinal resistance caused by a lifting of the Landau- 
level degeneracy which leads to the formation of Landau bands in the presence of ID 
potential modulation. When the electron motion is commensurate with the lattice, the 
electronic states are further modified into corresponding localized and extended states for 
specific strengths of the magnetic field. Instead of considering the usual weak-modulation 
limit, WuIf et a! (101 calculated the band part of the Hall conductivity in the strong- 
modulation regime where giant oscillations were predicted. On the other hand, Cui et  al 
(141 calculated the optically excited magnetoplasmon spectrum in the limit of weak ID 
lateral modulation, in which commensurability oscillations as a function of the magnetic 
field were predicted. 

Although there have been many experimental and theoretical studies of the optical and 
transport properties in ID arrays of quantum wires, several subtle questions still remain to 
be resolved. The microphysics of this system in the weak-modulation limit can be studied 
with the use of a naive model based on first-order perturbation theory. In the strong- 
modulation limit, this system can be considered as a 1D lattice because the small effects 
from Landau quantization at weak magnetic fields are only expected to play a minor role. 
In the intermediate-modulation regime, the Landau and size quantization effects become 
comparable to each other. However, when perturbation theory is applied to the weak- 
modulation limit, the rich microphysics hidden in the large intermediatemodulation regime 
cannot be accounted for or understood. 

This paper provides a detailed account of our earlier published Brief Report [SI. 
Here, we propose a simple model for the Landau-quantized 2DEG with a 1D periodic S- 
modulation. A self-consistent field theory for calculating the absorption coefficient is 
presented. Our calculations show that the cyclotron mode in a Landau-quantized ZDEG 
is split into tunnelling-coupled modes in the weak-modulation limit. As the modulation 
potential is swept through the large intermediatemodulation regime, these two tunnelling- 
coupled modes gradually crossover into edge and 1D lattice magnetoplasmon modes in the 
strong-modulation limit. 

The remainder of paper is organized as follows. In section 2, we present the numerical 
calculation of the energy eigenstates of a Landau-quantized ZDEG with ID periodic S- 
modulation. Section 3 is devoted to the calculation of the absorption coefficient in the mid- 
infrared regime. Section 4 contains numerical results for optical absorption with different 
parameters of potential strength and magnetic field. Section 5 contains a summary of key 
results and concluding remarks. 

2. Numerical diagonalization for Landau states under 1D periodic &modulation 

The single-particle Hamiltonian for a ZDEG in the x-y plane under a ID periodic &modulation 
and a uniform perpendicular magnetic field B is, within the Landau gauge, 
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where m* is the elecfxon effective mass. In (I), the 1D periodic &modulation potential V ( x )  
is chosen to be in the x direction and is given by 

where V, > 0 denotes the repulsive modulation strength and U, denotes the lattice site 
positions. We do not include the small effect of Coulomb interaction on the modulation 
potential. 

In this periodic 1D &modulation potential, the Landau eigenstates of the original ZDEG 
are mixed, so we label the new singleparticle energy eigenstates with quantum numbers 
(j, Xo) and use the Landau eigenstates as a basis set for the expansion 

where {Cn(j, Xo)) are the expansion coefficients for the j th  eigenstate. In'(3), $", x,(x, y) 
are the harmonic oscillator wave functions for a homogeneous Landau-quantized ZDEG, 
given by 

where L, is the length of the sample along the y direction, n = 0, 1, 2, . . . is a Landau- 
level index, Xo = k,L; is the guiding centre, ky is the wave vector along the y direction, 
and LH = (h/eE)'/* is the magnetic length. In (4). we have defined 

where H,(X) is the nth-order Hermite polynomial. The expansion coefficient CJj, XO) in 
(3) can be decided from the following homogeneous linear equation: 

CO C [(E:') - Ej(X0)) 8 n . n ~  + ~ n , , n ( x O ) ]  GU, ~ 0 )  = 0 (6) 
n=O 

subject to the orihonormality condition: 
CO 

cn( j ,  xo)cn(j', xo) = sj, j , .  
n=O 

Here, the energy eigenvalue in the absence of modulation is E,? =. (n + I/2)fioc, and 
o, = eB/m* is the cyclotron frequency. Twenty Landau levels have been included in our 
numerical calculation. By setting the determinant of the coefficient matrix in (6) equal to 
zero, we obtain a secular equation for the new energy eigenvalues E j ( X 0 )  in the presence 
of modulation. The Landau degeneracy with guiding centre X, is lifted by the 1D potential 
modulation. The second term in the coefficient matrix of (6) is defined as 
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In (7). we have set 
if I is an even integer 
if 1 is an odd integer 

and 

(9) 

where 0 4 5 6 1 measures the effect of a complex unit cell. Clearly, B,,,,(Xo) has the 
periodicity of 2a in the ID lattice as a function of XO. From this, it follows k m  (6) 
that Ej(X0)  = Ej(X0 + 2a). Moreover, because the coefficient matrix in (6) is real and 
symmetric, C,,(j, XO) are real numbers. 

if 1 is an even integer 
if I is an odd integer 

I >\ 
a, 
I= 
W 

S 
0 
L 
4 
U 
a, 
w 
U 
a, 
U 
0 
m 

- 

- 

Rgure 1. Plots of the scaled energy eigenvalues E j ( X o ) F o ,  (len-hand scale) and the scaled 
P d  energy E ~ f i o ,  (solid c w e  with n 2 ~ a ~  = 1.0 aod right-hand scale) as a function 
of the scaled magnetic field @/+a = a2/2nL$. The parameters used in the foUowing 
numerical dcubtions are: n = 1wO A," = 0.067m,. 9 = 12.9. L, = 50 A , y  = 
0.12 meV, T = 0 K. r = 1.0, B = 0.45 T. nzDn2 = 5.0. = (Vc/a)/(JiihZ/m'aZ) = 
(V./a)/(fih'/m*a2) = 1.0. 

In figures 1 we present the magnetic field dependence of the scaled energy eigenvalues 
E j ( X o ) / h o c  (a) and the scaled Fermi energy &/hoc (b) as a function of the dimensionless 
magnetic field parameter @/@o = a2/2n L; for the simple unit cell. Clearly from figure 
l(a), the origihal Landau-level degeneracy with guiding centre X, is lifted due to the 
ID potential modulation. Each Landau level is vertically expanded into a band. The 
bandwidth oscillates with magnetic field, indicating the suppression of electron tunnelling 
(zero bandwidth) in the system. The bandwidth also oscillates with band index and decreases 
at large magnetic fields. Different bands are found to overlap strongly at low magnetic fields. 
The electron energy is shifted upward and the electron eigenstates become bound states when 
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the magnetic field is weak. Figure I(b) has steps as the magnetic field is varied. Each step 
corresponds to the depopulation of one band. In the high-magnetic-field limit, the Fermi 
energy is frozen in the lowest-energy band, signalling complete depopulation and the ID 
extreme limit. However, at low magnetic fields, the Fermi energy is raised as a result of 
the decrease in the Landau-level degeneracy as the magnetic field is reduced. 

At weak magnetic fields, the dispersion as a function of the guiding centre Xo/a is weak 
for the lower energy bands but it becomes strong for higher bands. The band gap becomes 
smaller and smaller for higher bands. When the magnetic field increases, the dispersion of 
the lower bands is enhanced. 
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Figure X The scaled absorption mefficient &(o)a as 
a function of the probing photon energy !m for various 
values of the modulation strength 0.5 < V < 8.0 (a) at 
magnetic field B = 0.45 T. From the bottom Ihe uwes 
correspond to = 0.5.1.0-8.0 in steps of 1.0. For clarity, 
the cwes  are vertically displaced by the same amount. 
Floe of the excitation energies of the edge mode (filled 
circle), cyclotron mode (unfilled triangle), and ID lattice 
magnetoplasmon modes (filled hiangle and unfilled square) 
and the pIM for theu relevant peak intensities are shown 

2 4 6 8 10 as a function of the scaled modularion strength v in (b) 
and (c). respectively. The other parameters are the same as 

Potential Strength thosensedinfigurel. 

3. Self-consisteat field theory for the absorption coefficient 

The induced part of the density matrix is calculated as 
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where an x-direction-polarization probing field in the form of O p u t ( ~ ~ ~ ,  z)exp(iwt) is 
assumed, (q~ jX0)  @j,x, , (q)  = @j,x0(x, y), Ej(X0)  is the single-particle energy, 
fo [Ej (Xo)  - EF] is the Fermi-Dirac distribution function in equilibrium, Hl(q) is the 
induced part of the Hamiltonian, EF is the Fermi energy which is determined by the doped 
electron density, o is the frequency of the probing light, and y stands for the optical 
broadening due to impurity, phonon and surface roughness scatterings. In the random- 
phase approximation, the induced electron density is written as 

Here, eS = 4n€o€b with eb being the average background dielectric constant. In (ll), b ( z )  
stands for the envelope function in the z direction. Because the thickness of 2DEG layer is 
usually much smaller than the period of modulation, we assume that electrons are restricted 
to the lowest subband along the z direction. By noting that the wavelength of the probing 
field is much larger than the sample size, we neglect the variation in the amplitude of the 
perturbed field in the x-y plane. With these assumptions in mind and taking the probing 
light as polarized in the x direction, we write 

(Pm(~;I; o) = / dz’Ito(z’)Iz P‘(T{~, z’; o) = -4‘~’. 

V(4)  = - 1 dz’dz” IC(z’)I2 exp(-qlz’ -z”l) lt(z”)I2 

(13) 

For convenience, we introduced the following notation: 

(14) 

F ~ x , . ~ x ; ( Q )  = / exp(-iq. @;xo(pil) @ ~ , x ; ( T [ ~ )  (15) 

&e2 
€ 5 4  
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where A = L,L, is the sample area with L, denoting the length of the sample in the 
n direction. Therefore, it is a simple matter to obtain the following self-consistent linear 
equation determining the screened Coulomb interaction matrix: 

= SkYo. k’Yi(W) 

where the source term is 

In order to obtain information concerning the oscillator strengths of the dipole-active 
excitation modes, we have to calculate the absorption coefficient as a function of the 
frequency o. Further calculation shows that (15) is given by 

2 exp - (2x0 + qyL2x) fi, j,: x,(d (21) IIi: 1 Fix,, j,x;(d = 8.;. xO+qy~,, 

fj. j,; x,(q) = 

where 
C,*(j, XO) cnU. xo + q y L i )  Cn,(q) (22) 

nn’ 

and 

In equation (23), q = m. N< = min(n, n‘), N, = max(n, n’), and L;(x) is 
a Lagnerre polynomial. The Fourier component of the induced polarization function is 
defined through 
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where the summation over m includes the contribution from Umklapp scattering, and 
G = 2n/25 is a reciprocal-lattice vector. The dipole transition matrix Xjj,(Xo) defined 
in (16) is calculated as 

where sgn(x) is the signum function. If we employ the Fang-Howard variational type 
of envelope function for the lowest subband along the z direction, the form factor of the 
Coulomb interaction due to the finite thickness L, of the EG layer has been calculated as 

The induced electron density in (25) is a solution of the following linear equation: 

which is a special case of the general result in (19) when we only include the dipoleactive 
modes where 

0 Ej(X0) - EF] - f0 [E,,(&) - EF] 
fio + iy - Ey(X0) + Ej(X0) 

.(f [ 

is part of the dielectric function matrix, and the source term is 

21 dXo F; j , :xo(mG) exp(-imGXo)Xjj,(Xo) 
1 

Rm(o)  = - 

The absorption coefficient is related to the imaginary part of the Lorentz ratio in a 
straightforward way and the result is [U] 
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where Pph(0)  = [exp(fio/kBT)- 11-I is the photon distribution function, and the frequency- 
dependent refractive index is found to be 

From (33), we know that the dipole-active mode in this system is the one with qr = 0, i.e., 
the guiding centre remains unchanged during the electron transitions. 

We easily obtain the equation determining the magnetoplasmon excitation energies from 
(29) by setting y = 0, and the result is 

(34) 
Furthermore, after we invert the matrix in (29), we obtain the Fourier component of the 
induced electron density. Using these results, we can write the induced-electron-density 
distribution function in real space as 

det [Jmr,, - A,., ,(w)] = 0 .  

(35) 

which is obviously periodic in the x direction. Therefore, the gauge invariance is retained in 
the physically measurable quantity although we have chosen the asymmetric Landau gauge. 

1 x S( I mG I) 6. j , :  xo (m G) exp( i  GXo) 

4. Numerical results for the absorption coefficient 

Figures 2 display the scaled absorption coefficient for the simple unit cell as a function of 
probing photon energy for different values of modulation strength. These plots show the 
resonant peak positions and the intensities of the absorption coefficient as a function of 
the modulation strength. From figure 2(a), we can clearly see how the magnetoplasmon 
mode changes from a cyclotron mode in the weakmodulation regime (single peak at 
V = ( c / a ) / ( f i f i 2 / m * a 2 )  = (vo/a)/(J;ifi2/m*a2) = 0.5) to a ID lattice magnetoplasmon 
mode when the modulation is strong (a series of peaks at = 8.0). However, for 
intermediate modulation potentials, the cyclotron mode splits into two new tunnelling- 
coupled modes. As the modulation strength increases, one of these coupled modes gradually 
changes into a 1D lattice magnetoplasmon mode while the other one develops into an edge 
mode. The repulsive potential first shifts the electron energy upward which enhances 
the electron tunnelling at both sides of the scatterer. However, when the modulation is 
sufficiently strong that the electron tunnelling is suppressed, we are left with a 1D array 
of isolated quantum wires. The peak becomes broadened and the weight of the spectrum 
is distributed more extensively. Figure 2(b) shows that the potential strength dispersion 
of the excitation energy of tunnelling-coupled modes is appreciable compared with the 
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Figure 3. Plots of the scaled absorption Mefficient 
@*&)a as a function of the probing photon energy ho 
for various values of magnetic field 0.2 < B < 0.9 T 
(0)  under intermediate modulation v = 1.0. From the 
bottom, lhe curves correspond to B = 0.2 T through 
to B = 0.9 T in steps of 0.1 T. For clarify. the 
successive curves are vertically displaced. The plot for 
the excitation energies of the edge mode (filled circle), 
cyclotron mode (unfilled triangle), and Zo,, Boc (filled 
triangle and unfilled square) and the plot for their relevant 

0.0 0.2 0.4 0.6 0.8 I .o peak intensities are shown as a function of the magnetic 
field B in (b) and (c), respectively. The other parameters 

3-' 

_. 
s 1.0 
0 .- + 

0 0.5 

Q 

v) 
Q 

0.0 

Mag net ic Fie1 d (Tesla) are the same as those in figure 1. 

ID lattice magnetoplasmon modes. When the repulsive potential becomes strong, a hard 
potential wall is formed which favours the electrons performing skipping orbits along the 
walls. As a consequence, the excitation energy of an edge mode decreases as the potential 
increases. In the weak-potential regime, the tunnelling-coupled modes are the dominant 
excitations, whereas in the strong-potential regime, the ID lattice magnetoplasmon mode 
becomes dominant. This behaviour is verified in figure 2(c) where the scaled peak intensities 
are shown as a function of the potential strength for different modes. There is a crossover 
region where the absorption peak intensities of both the tunnelling-coupled and ID lattice 
magnetoplasmon modes are comparable. At some critical value of modulation strength, the 
cyclotron-lie mode ceases to exist and only the edge mode is left. The intensity of an edge 
mode at strong modulations becomes too weak and invisible. Therefore, the whole system 
only displays the behaviour of ID lattice magnetoplasmon modes in the strong-modulation 
limit as for a ID array of quantum wires. 

Figures 3 are the plots of scaled absorption coefficient for the simple unit cell as a 
function of the probing photon energy for various values of the magnetic field in the 
intermediate-modulation regime and the plots for magnetic field dispersions of peak positions 
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Figure 4. The scaled absorption ccefficient fJa&)a as 
a function of the probing photon energy Am for various 
values of magnetic field 0.2 < B < 0.9 T ( U )  under 
strong modulation = 5.0. From the bottom. the CuIves 
correspond to B = 0.20.9 T in steps of 0.1. FW 
clarity, successive e w e s  are vertically shifted by the 
same amount. The plot of the excitation energies of the 
edge mode (filled circle), the ID lattice wgnemplasmon 
modes (open triangle) and the plot of the corresponding 
peak intensities are shown as a function of fhe magnetic 
field B in (b) and (e), respectively. The other parameters 
are the same as those used in figure 1. 

and intensities. From figure 3(a), we find the emergence of tunnelling-coupled modes into 
a cyclotron mode in the strong magnetic field (single peak at B = 0.9T). During this 
procedure, there are fast interchanges of peak intensity between two tunnelling-coupled 
modes with the increase of the magnetic field. The 2hwc and %w, resonances are greatly 
suppressed at strong magnetic fields. The magnetic field dispersion of the excitation energies 
in figure 3(b) shows us the crossover behaviour from the weak- to strong-magnetic-field 
regimes. The linear dispersion of all the modes is recovered at strong magnetic fields. 
However, as magnetic field decreases, the excitation energies are found to oscillate with field. 
The strong oscillations in the tunnelling-coupled modes can extend over to high magnetic 
fields. The visible ?.hoc and 3Rwc modes at low magnetic fields are the consequence of the 
breaking of translational symmetry by the ID potential modulation in the system. Figure 
3(c) demonstrates the interchanges of the scaled peak intensity of the tunnelling-coupled 
modes as the magnetic field is varied. There are significant peak sfnngth exchanges across 
the whole intermediate-field regime which correspond to a series of anti-phase oscillations 
in the peak strengths as a function of the magnetic field for these two modes. The peak 
intensities of tunnelling-coupled modes are found to be much larger than those of Zo, 

- 
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and 3hw, modes. At strong magnetic fields, one of the tunnelling-coupled modes evolves 
into an edge mode and the peak intensity of it decreases greatly with the increase of the 
magnetic field- whereas the peak intensity of a cyclotron-lie mode which is also split out 
from the tunnelling-coupled modes increases with magnetic field in an oscillating way. 
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calculated as a function of the pmbmg photon energy C 
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0 1.0 < nmo2 < 8.0 (a) under strong modulation 

= 5.0. From the battom, the curves correspond to 
nmoZ = 1.0-8.0 in steps of 1.0. For clarity, the C U N ~  

are v e a i d y  displaced by a constant. The plot of the 
excitation energies of the edge mode (filled uiangle), and 
ID lattice magnetoplasmon modes (unfilled triangle and 
filled circle) and the plot for their conesponding p& 

0 2 4  6 8 1 0 intensitis are shown as a function of the scaled electron 
density nz& in (b) and (c), respectively. The other 
parameters are the same as those used in figure 1. 
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n 
Q 
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As a comparison with figure 3, we show in figures 4 plots of the scaled absorption 
spectra for the simple unit cell in the strong-modulation regime as a function of the probing 
photon energy at different values of the magnetic field. We also show plots for the magnetic 
field dispersions of both the peak positions and the intensities in this case. If we start from 
edge and ID magnetoplasmon modes at B = 0.2T, the emergence of these two modes 
into a cyclotron mode in figure 4(a) occurs at even higher magnetic fields ( B  > 0.9 T), 
passing through the formation of tunnelling-coupled modes. Increasing the magnetic field 
first enhances the electron tunnelling via the formation of two tunnelling-coupled modes, 
and then the magnetic field further suppresses the electron tunnelling via the combining of 
these two modes into one cyclotron mode. The magnetic field dispersion of the excitation 
energies of tunnelling-coupled modes is shown in figure 4(b) displaying the whole evolution 
process of the normal modes. As the magnetic field is varied, the excitation energies of 
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these two modes are found to oscillate with the field strength. The large oscillations in 
the energy of the edge mode survive for higher magnetic fields and finally die out at very 
strong magnetic fields. On the other hand, the 1D lattice magnetoplasmon mode very quickly 
changes to a cyclotron mode and recovers to the linear dispersion relation at strong magnetic 
fields. Figure 4(c) demonstrates the oscillations in the scaled peak intensities of the edge 
and ID lattice magnetoplasmon modes. The peak intensity of the edge mode decreases with 
magnetic field and is found to be always smaller than that of the 1D lattice magnetoplasmon 
mode except at very low magnetic fields. The oscillations in the peak intensities of these 
two modes are obviously out of phase. Although at high magnetic fields, the dispersion 
of the excitation energy for the ID lattice magnetoplasmon mode already exhibits a linear 
relation, the intensity of this mode still sharply changes with magnetic field. 

In figure 5, we calculate the absorption coefficient as a function of the probing photon 
energy in the strong-modulation regime, for the simple unit cell and various values of the 
electron density. We also plot the peak positions and the absorption intensities as functions 
of the electron density. Beginning as an edge and 1D lattice magnetoplasmon mode in figure 
5(a), the 1D lattice magnetoplasmon mode bifurcates when the electron density increases, 
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while the peak position and intensity of the edge mode are oscillatory. From figure 5(b), it 
is evident that the excitation energy of the edge mode oscillates strongly with the electron 
density, i.e. the Fermi energy. When the Fermi energy lies about half-way between two 
bands, corresponding to localized states, the excitation energy has a minimum. In this 
case, the potential wall produced by strong modulation is comparatively hard which gives 
rise to the skipping motion of elecfxons. When the Fermi energy lies within the band, 
corresponding to extended states, the excitation energy of an edge mode has a maximum 
value. In this case, the potential wall becomes soft and the coupling between the two 
sides of the scatterer shifts the excitation energy upward. There are no oscillations in the 
excitation energies of the 1D lattice magnetoplasmon modes. Figure 5(c) presents the peak 
intensities of the edge and 1D lattice magnetoplasmon modes as a function of the electron 
density. The intensities of the two ID lattice magnetoplasmon modes are always stronger 
than for the edge mode. There is a strong interchange of the two peak intensities which 
oscillate out of phase with the electron density. The peak intensity of the edge mode also 
oscillates with electron density in a way correlated with its excitation energy. 

In figure 6, we plot the absorption coefficient for the complex unit cell as a function of 
the probing photon energy for various values of the displacement r in the strong-modulation 
regime. We also plot the displacement dispersions of the peak positions and the intensities. 
In figure 6(n), the absorption coefficient is a periodic function of T with the periodicity of 
r + 2- T when 0 4 r < 1. The small value z = 0.1 corresponds to the case with adjacent 
narrow and wide quantum wires in a unit cell, while the large value T = 1 corresponds to 
the quantum wires having equal width. There is a continuous crossover from a doublewire 
complex unit cell to a simple unit cell composed of only one wire. When r is small, the 
absorption spectrum is dominated by the low-energy excitations inside the wide wire. There 
are strong peak intensity exchanges throughout the process. The peak is broadened when 
r is increased. Our calculated results in figure 6(b) show that the excitation energies of 
the ID lattice magnetoplasmon modes oscillate with r and become large as r is increased. 
The excitation energies also have a periodicity of r + 2 - r when 0 < r 4 1. The 
peak intensities of these two modes in figure 6(c) display strong anti-phase oscillations as a 
function of r. With the increase of T, the intensities of  these two modes decrease and have 
periodicity satisfying T + 2 - 7 when 0 < r < 1. 

5. Concluding remarks and summary 

In this paper, we used a ID periodic &modulation to simulate a ID array of quantum wires for 
simple and complex unit cells. The exact energy eigenstates were obtained by employing 
a numerical diagonalization method. On the basis of these results, we have derived a 
self-consistent field theory for the mid-infrared absorption coefficient of the system. The 
crossover from a cyclotron mode to two tunnelling-coupled modes and finally to edge and 
1D lattice magnetoplasmon modes as the modulation strength is increased is thoroughly 
studied. The magnetic-field-enhanced and magnetic-field-suppressed electron tunnelling is 
associated with the evolution to cyclotron modes at strong magnetic fields passing through 
the formation of tunnelling-coupled modes. The edge mode excitation energy oscillates as 
a function of the electron density. These oscillations correspond to a soft or hard potential 
wall for which the electron states are extended or localized, respectively. The displacement 
dependencies of ID lattice magnetoplasmon modes under strong modulation are found to 
be periodic, and correspond to the evolution from a complex unit cell which is composed 
of two quantum wires, one namw and one wide, to a simple unit cell containing only one 
quantum wire. 
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Our preliminary calculations for the magnetoplasmon excitation in this ID array of 
quantum wires has revealed some interesting features in the mid-infrared-range absorption 
spectrum for different values of modulation strength, magnetic field, electron density, and 
displacement. This work for the intermediate-modulation regime is complemenmy to 
previous studies for the weak- or strong-modulation l i t .  We expect that the present system 
will also show some interesting features in the magnetoresistance and Hall resistance if the 
modulation strength is chosen in the crossover regime. Calculations related to  this problem 
are currently being done. We hope that this work will generate experimental interest in 
verifying the predictions in this paper. 
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